Conditional Probability

- the conditional probability $P(x \mid y)=P(X=x \mid Y=y)$ is the probability of $P(X=x)$ if $Y=y$ is known to be true

"conditional probability of x given y "

Conditional Probability

$$
\begin{aligned}
& P(A) \approx 0.3 \\
& P\left(A \mid B_{3}\right)=? \\
& P\left(A \mid B_{1}\right)=? \\
& P\left(A \mid B_{2}\right)=?
\end{aligned}
$$

Conditional Probability

- "information changes probabilities"
- example:
b roll a fair die; what is the probability that the number is a 3 ?
- what is the probability that the number is a 3 if someone tells you that the number is odd? is even?
- example:
- pick a playing card from a standard deck; what is the probability that it is the ace of hearts?
* what is the probability that it is the ace of hearts if someone tells you that it is an ace? that is a heart? that it is a king?

Conditional Probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

if X and Y are independent then

$$
\begin{gathered}
P(x, y)=P(x) P(y) \\
\therefore P(x \mid y)=\frac{P(x) P(y)}{P(y)}=P(x)
\end{gathered}
$$

Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

posterior

Bayes Rule with Background Knowledge

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$

Back to Kinematics

Figure 5.1 Robot pose, shown in a global coordinate system.
pose vector or state $x_{t}=\left(\begin{array}{l}x \\ y \\ \theta\end{array}\right)$ J bearing or heading ${ }^{\text {location (in world frame) }}$

Probabilistic Robotics

- we seek the conditional density

$$
p\left(x_{t} \mid u_{t}, x_{t-1}\right)
$$

- what is the density of the state

$$
x_{t}
$$

given the motion command

$$
u_{t}
$$

performed at

$$
x_{t-1}
$$

Probabilistic Robotics

Figure 5.2 The motion model: Posterior distributions of the robot's pose upon executing the motion command illustrated by the solid line. The darker a location, the more likely it is. This plot has been projected into 2-D. The original density is three-dimensional, taking the robot's heading direction θ into account.

Velocity Motion Model

- assumes the robot can be controlled through two velocities
p translational velocity V
> rotational velocity ω
- our motion command, or control vector, is

$$
u_{t}=\binom{v_{t}}{\omega_{t}}
$$

- positive values correspond to forward translation and counterclockwise rotation

Velocity Motion Model

Velocity Motion Model

center of circle

$$
\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}=\binom{\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)}
$$

where

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

Velocity Motion Model

1: \quad Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right)$:
2 :

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

$$
x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)
$$

4: $\quad y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)$
5:
$r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}$
6:
$\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)$
7: $\quad \hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}$
8: $\quad \hat{\omega}=\frac{\Delta \theta}{\Delta t}$
9:
10:

$$
\hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}
$$

$$
\text { return } \operatorname{prob}\left(v-\hat{v}, \alpha_{1}|v|+\alpha_{2}|\omega|\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3}|v|+\alpha_{4}|\omega|\right)
$$

$$
\cdot \operatorname{prob}\left(\hat{\gamma}, \alpha_{5}|v|+\alpha_{6}|\omega|\right)
$$

